This paper evaluates effects of introduction of a universal child benefit program on female labor supply. Large scale government interventions affect economic outcomes through different channels of various magnitude and direction of the effects. In order to account for this feature, I develop a model in which a woman decides whether to participate in the labor market in a given period. I show how to use the resulting decision rules to explain flows in aggregate labor supply and simulate counterfactual paths of labor force. My framework combines flexibility of reduced form approaches with an appealing structure of dynamic discrete choice models. The model is estimated nonparametrically using recent advances in machine learning methods. The results indicate a 2-4 percentage points drop in labor force among the eligible females, mainly driven by changes in women's perceived trade-offs and beliefs that discouraged inflows.
In addition to this study, I also present a variety of sensitivity analyses. With the development of statistical theory behind the machine learning algorithms, they are becoming an important tool in the empirical economists' toolbox. By construction, they rely on a set of pre-specified hyper parameters governing the architecture of the algorithm chosen arbitrarily by a researcher. In this note, I show that the economic interpretation of the estimates (obtained via Generalized Random Forest by Susane Athey, Julie Tibshirani, and Stefan Wager ) is robust to different choices of the hyper parameters. This is an encouraging result suggesting that despite their complexity, the machine learning algorithms are likely to become a part of applied econometricians' toolbox.
Unpublished version
Covariate balancing PS applied to female labor force supply
The aim of the project is develop a new estimator to analyze the case of a universal policy intervention when control groups are unavailable. The estimator will be applied to quantify the effect of child support instrument on the labor supply of men and women. We will verify a hypothesis that monetary non-equivalent transfer reduces the labor supply of the second earner in a household, ceteris paribus. We will separate between the effects on the breadwinner and the second earner in the aftermath of the large family transfer program in Poland. Since in Poland second earner is typically a woman, we will also compare the labor supply reaction of married women and single earner households with woman as a head of the household.
This project combines applied labor economics with theoretical econometrics. The estimation of the effects of the unconditional non-equivalent transfer program program on labor supply falls into the category of program evaluation econometrics, but most of the estimators require a valid control group. We propose to apply a novel approach: a difference-in-difference (DID) estimator with weights derived from the Covariate Balancing Propensity Score (CBPS) estimator by Imai and Ratkovic (2014). The strategy based on DID exploits the quasi-natural experiment character of program, whereas the weighting scheme based on CBPS will assure proper adjustment of the control group to the treated group. Utilizing data for Poland (labor force survey and household budget survey) we will estimate a range of local treatment effects, to provide reliable boundaries for the total effect.
Co się stanie, gdy część rodzin dostanie nagle i bez związku z własną aktywnością bardzo duży transfer? I jak to policzyć?
Our research proposal consists of two important contributions. First, methodological, we propose a novel way to estimate the causal effect of policy instrument, in a situation, when the instrument design invalidates other estimation methods. Second, this novel estimator will be applied to provide an evaluation of the large scale policy instrument in Poland, effects of child support instrument on household labor supply. Additionally, will develop a statistical package for CBPS in Stata environment. The package will be distributed free of charge on the project website and on user forums. As the CBPS method serves for calculation of covariate balancing propensity score in any context, the scope of potential usage is very broad.
@article{premik2021estimating,
title={Estimating the effects of universal transfers: new {M}{L} approach and application to labor supply reaction to child benefits},
author={Premik, Filip and others},
journal={FAME—GRAPE Working Paper},
year={2021}
}